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Example inferences

Does this patient have Alzheimer’s disease, schizophrenia,
depression, etc.?

What is the patient’s cognitive ability?

How amenable is this patient to talk therapy?

Was this individual abused as a child?
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Pieces of information

Symptoms Self-report measures obtained via interview,
whether structured or not

Behavioral observations and other signs Signs are
observable characteristics, in contrast to symptoms

Life history facts

Psychological test results such as scores or unscored data

Physiological measures

Others?
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Fundamental Quantities

X is the observable characteristic (sadness, defense
mechanism, etc.)

Y is the latent state (depression, schizophrenia, etc.)

Πs and Πn are two non-overlapping subpopulations

P = Population point prevalence of Πs

Q = 1− P

α is the sensitivity, or Pr{X = 1|Y = 1}. (What is 1− α?)

β is the specificity, or Pr{X = 0|Y = 0}. (What is 1− β?)
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Bayes’ Theorem

α and β give information about one’s score on the test given their
diagnostic status
We want to go the other way, and infer diagnostic status given their
test score
Bayes’ theorem let’s us do just that.

Pr{Y |X} =
Pr{X |Y }Pr{Y }

Pr{X}
,

thus the probabilty of having the disorder given a positive test
score is:

Pr{Y = 1|X = 1} =
Pr{X = 1|Y = 1}Pr{Y = 1}

Pr{X = 1}
,

where
Pr{Y = 1} = P is the base rate of the disorder,
Pr{X = 1} is the probability of a positive test score, and
Pr{X = 1|Y = 1} = α is the sensitivity.
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Derived Quantities: PPV & NPV

Positive predictive value: Probability one is called a case, given
one scores positive on the test.

PPV = Pr{Y = 1|X = 1}

=
Pr{X = 1|Y = 1}Pr{Y = 1}

Pr{X = 1}
(1)

=
Pα

Pα + Q(1− β)

Negative predictive value: Probability one is called a noncase
given one scores negative on the test.

NPV = Pr{Y = 0|X = 0}

=
Pr{X = 0|Y = 0}Pr{Y = 0}

Pr{X = 0}
(2)

=
Qβ

P(1− α) + Qβ
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Derived Quantities: Hit Rate (aka Efficiency)

Hit Rate: Proportion of individuals correctly classified.

HR = Pα + Qβ
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Likelihood and Likelihood Ratio

Probability mass function:

g(x ; n, p) =

(
n

x

)
px(1− p)n−x

Probability density function:

g(x ;µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2

These are probability functions when we consider the
parameters fixed and the observed scores x random.

They are likelihood functions when the observed scores x are
fixed (e.g., we collected data) and the parameters are random.
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Likelihood and Likelihood Ratio

Generally, a likelihood function’s value for the ith patient from
population Πs with test result X = xi equals the probability
function for Πs at X = xi .

More specific to symptoms, the likelihood that a randomly
chosen individual has symptom X given they are a case is α,
by definition.

The likelihood they have symptom X if they are a noncase is
(1− β).

The quotient α
(1−β) is the likelihood ratio, the strength of

evidence in favor of the hypothesis that a patient who has
symptom X has disorder Y . More formally:

Ω(xi ) =
Pr{X = xi |Y = 1}
Pr{X = xi |Y = 0}
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Likelihood and Likelihood Ratio

The generic LR is symbolized as:

Ω(X = xi ) =
Pr{X = xi |Y = 1}
Pr{X = xi |Y = 0}

For patients with X = 1 the LR is:

Ω1 =
α

(1− β)

For patients with X = 0 the LR is:

Ω0 =
1− α
β
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Stepwise revision of probabilistic knowledge.

Opost = OpriorΩX=xi

=
P

Q
×


α

(1−β) , if X = 1

(1−α)
β , if X = 0
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Worked Example – Clinic A.

In clinic A P = .01. Assume we have a patient with a positive test
for the disease. Let the sensitivity and specificity be:

α = .875

β = .9

For clinic A our posterior odds of disease in this patient is:

Opost = OpriorΩX=1

=
P

Q

α

(1− β)

=
.01

.99

.875

(1− .9)

=
35

396
≈ .0884,

or a posterior probability of disease of .0884
(.0884+1) = .0812
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Worked Example – Clinic B.

Now we move to clinic B, where the base rate is much higher at
P = .25. α and β do not depend on the base rate so they remain
α = .875 and β = .9. For clinic B our posterior odds of disease in
this patient is:

Opost = OpriorΩX=1

=
P

Q

α

(1− β)

=
.25

.75

.875

(1− .9)

=
35

12
≈ 2.917

or a posterior probability of disease of 2.917
(2.917+1) = .74.
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Worked Example – Two Tests

Let’s say we’d like to be more confident in our diagnosis than 3:1
odds. If we have another test Z and the test is independent from
the previous test it’s a simple matter to use it to update our
current best guess.

Assume αZ = .7 and βZ = .95

Our old test we refer to as test X

Opost = OpriorΩX=xi ΩZ=zi

=
P

Q
×


1−αX
βX

1−αZ
βZ

if X = 0,Z = 0;
1−αX
βX

αZ
1−βZ if X = 0,Z = 1;

αX
1−βX

1−αZ
βZ

if X = 1,Z = 0; and
αX

1−βX
αZ

1−βZ if X = 1,Z = 1;
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Two independent Tests

Let’s say we’d like to be more confident in our diagnosis than 3:1
odds. If we have another test Z and the test is independent from
the previous test it’s a simple matter to use it to update our
current best guess.

Assume αZ = .7 and βZ = .95

Our old test we refer to as test X

A positive test result on tests X and Z in clinic B results in:

Opost = OpriorΩX=xi ΩZ=zi

=
.25

.75

.875

1− .9
.7

1− .95
= 40.833,

a posterior probability of 40.833
1+40.833 = .98.
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Two independent Tests

All possible outcomes for this patient in clinic B

Opost = OpriorΩX=xi ΩZ=zi

=
.25

.75
×



1−.875
.9

1−.7
.95 = .002, when X = 0,Z = 0

1−.875
.9

.7
1−.95 = .13, when X = 0,Z = 1

.875
1−.9

1−.7
.95 = .77, when X = 1,Z = 0

.875
1−.9

.7
1−.95 = 41, when X = 1,Z = 1
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Total Relevant Evidence

More ‘information’ is not necessarily better, especially when
you’re a human judge.

Independent and valid evidence (tests) is ideal. This is also
rare.

Combining information across multiple correlated tests is
tricky and depends on the strength of correlation, which could
be different in the cases versus controls.

This issue will come up later when we discuss incremental
validity.
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Cutting Scores and (Quasi-) Continuous Tests

Show program. Note that cutting score affects sensitivity &
specificity and thereby hit rate. Optimal cutting score depends on
the test score distributions (separation, size, shape).
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Betting the Base Rate

In some instances the base rate is so low, the tests are so weak and
poorly calibrated, that it is more efficient to “bet the base rate”
than administer the test.

Table: Test performance under varying base rates and cutting scores

BR Scale Cut Score PPV NPV α β HR Betting BR HR
.45 F ≥ 90 .72 1.0 1.0 .68 .82 .55
.45 F ≥ 100 .80 .97 .97 .80 .88 .55
.16 F ≥ 90 .38 1.0 1.0 .68 .74 .84
.16 F ≥ 100 .50 1.0 1.0 .81 .84 .84

MMPI F scale (Arbisi & Ben-Porath, Psych Assessment, 1998)
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Simple Decision-Theoretic Analysis

So far our goal has been to maximize correct classifications of
disorder. If Opost > 1, diagnose disease. If Opost < 1 do not.

We have ignored the costs of making different decisions,
which may affect how cautious or aggressive we are in making
diagnoses.
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Simple Decision-Theoretic Analysis: Classic Example

Tomorrow morning I arise and prepare to go out. I have to decide
whether to take my umbrella. If it rains and I have my umbrella, I shall
remain dry; otherwise I’ll get wet, which is disagreeable. On the other
hand, if I carry my umbrella and it doesn’t rain, I’m burdened with the
clumsy thing, which is also unpleasant. The matrix of disutilities is:

Weather
Dry Rain

Umbrella
Don’t Carry 5 50

Carry 20 3

Correct for the minimum disutility per column to obtain:

Weather
Dry Rain

Umbrella
Don’t Carry 0 47

Carry 15 0
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Simple Decision-Theoretic Analysis: Incorporating Base
Rates

Now assume we know there’s a 30% chance of rain tomorrow, we
can revise our expected disutilities:

Weather
Dry Rain

Umbrella
Don’t Carry (1− .3)× 0 = 0 .3× 47 = 14.1

Carry (1− .3)× 15 = 10.5 .3× 0 = 0

If you were a rational actor, what would you do?
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Complicated Decision-Theoretic Analysis

Now we have a patient expressing increased suicidal ideation, who
has a plan, but denies intention to suicide. Grove states the base
rate for suicide among such individuals is ≈ 1%. Let’s make up
some disutilities.

Will Suicide
No Yes

Hospitalize
No 0 225
Yes 100 0

The expected disutility of not hospitalizing such patients is:

.99× 0 + .01× 225 = 2.25

The expected disutility of hospitalizing them is:

.99× 100 + .01× 0 = 99

What would a rational actor do?
Scott Vrieze Base Rates and Bayes’ Theorem
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Complicated Decision-Theoretic Analysis

What if the disutility matrix was different?

Will Suicide
No Yes

Hospitalize
No 0 1000
Yes 1 0

The expected disutility of not hospitalizing such patients is:

.99× 0 + .01× 1000 = 10

The expected disutility of hospitalizing them is:

.99× 1 + .01× 0 = .99

Under this scenario it “pays” to hospitalize such patients.
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Does this seem appealing?

How difficult is it to do this?

Who are the stakeholders, how do you measure
their disutilities, how do you weight them?

Is difficulty a reason to ignore these issues?
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