GSCAN dbGaP

From Vrieze Wiki
Revision as of 21:28, 9 September 2016 by Hannah Young (talk | contribs)
Jump to navigation Jump to search

Studies

Framingham

ID Mapping

The following snppit describes how the PLINK genotype file IDs (which use "sampid") were mapped to the dbGaP_Subject_ID contained in the available phenotype files. The snippet only contains one of Joyce Ling's phenotype files for illustration only.

This script and the results it produces can be found in /work/KellerLab/GSCAN/dbGaP/Framingham/ID_mapping.r

### ID mapping file from dbGaP_Subject_ID to SAMPID 
ID.map <- read.table(gzfile("/work/KellerLab/GSCAN/dbGaP/Framingham/PhenoGenotypeFiles/RootStudyConsentSet_phs000007.Framingham.v28.p10.c1.HMB-IRB-MDS/PhenotypeFiles/phs000007.v28.pht001415.v16.p10.Framingham_Sample.MULTI.txt.gz"), header=T, sep="\t", stringsAsFactors=F)
 
### Genotype files
genotype.IDs <-  read.table("/work/KellerLab/GSCAN/dbGaP/Framingham/PhenoGenotypeFiles/ChildStudyConsentSet_phs000342.Framingham.v16.p10.c1.HMB-IRB-MDS/GenotypeFiles/phg000006.v9.FHS_SHARe_Affy500K.genotype-calls-matrixfmt.c1/subject_level_PLINK_sets/FHS_SHARe_Affy500K_subjects_c1.fam", header=F)
names(genotype.IDs) <- c("famid", "SAMPID", "patid", "matid", "sex", "phenotype")
 
length(which(genotype.IDs$SAMPID %in% ID.map$SAMPID))
## 6954 
 
x <- merge(genotype.IDs, ID.map, by="SAMPID", all.x=T)
x <- x[,c(1:5,7)]
 
### One of Joyce's phenotype ID files (eventually all phenotypes for all available participants were merged in, but this is a good example.)
phenotypes <- read.table("OffC_Exam_1.txt", header=T, sep="\t")
xx <- merge(x, phenotypes, by="dbGaP_Subject_ID", all=TRUE)
xx <- xx[,c(2:ncol(xx),1)] ## Reorder so the dbGaP_Subject_ID is the last column 
write.table(xx, file="framingham_GSCAN_phenotypesCovariates.ped", quote=FALSE, sep="\t", row.names=F)

Phenotypes

(Joyce will update this section)

Genotypes

We used the Affy 500K genotypes found here: /work/KellerLab/GSCAN/dbGaP/Framingham/PhenoGenotypeFiles/ChildStudyConsentSet_phs000342.Framingham.v16.p10.c1.HMB-IRB-MDS/GenotypeFiles/phg000006.v9.FHS_SHARe_Affy500K.genotype-calls-matrixfmt.c1/subject_level_PLINK_sets/FHS_SHARe_Affy500K_subjects_c1.[bed|bim|fam]


ARIC

(Hannah/Joyce to update this section following Framingham as a guide)

ID Mapping

Phenotypes

phenotypes <- read.table("/work/KellerLab/GSCAN/dbGaP/ARIC/PhenoGenotypeFiles/ChildStudyConsentSet_phs000090.ARIC_RootStudy.v3.p1.c1.HMB-IRB/PhenotypeFiles/phs000090.v3.pht000114.v2.p1.c1.GENEVA_ARIC_Subject_Phenotypes.HMB-IRB.txt.gz",
                         header=T,
                         sep="\t",
                         stringsAsFactors=F)

phenotypes <- subset(phenotypes, select=c("geneva_id", "racegrp", "gender","v1age01", "anta01",
                         "anta04", "drnkr01", "hom29", 'hom35', "hom32", 'cigt01',
                         'evrsmk01', 'dtia90','dtia96', 'dtia97','dtia98', 'cursmk01',
                         'forsmk01'))

### rename phenotypes to be readable
names(phenotypes)[c(1,2,3,4,5,6)] <- c("gen_id", "race", "sex", "age", "height", "weight")

### To connect sample ids to geneva ids, take SAMPID (the ID used in the genotype fam file, and SUBJID (aka geneva_id) )
id_map <- read.table(gzfile("/work/KellerLab/GSCAN/dbGaP/ARIC/PhenoGenotypeFiles/ChildStudyConsentSet_phs000090.ARIC_RootStudy.v3.p1.c1.HMB-IRB/GenotypeFiles/phg000035.v1.ARIC_GEI.genotype-qc.MULTI/geno-qc/samp-subj-mapping.csv.gz"),
                     header=T,
                     sep=",",
                     stringsAsFactors=F)[,c(2,1)]
names(id_map) <- c("SAMPID", "geneva_id")

### import genotype data to get family info
fam_data <- read.table("/work/KellerLab/GSCAN/dbGaP/ARIC/PhenoGenotypeFiles/ChildStudyConsentSet_phs000090.ARIC_RootStudy.v3.p1.c1.HMB-IRB/GenotypeFiles/phg000035.v1.ARIC_GEI.genotype-calls-matrixfmt.c1.GRU.update1/Genotypes_with_flagged_chromosomal_abnormalities_zeroed_out/ARIC_PLINK_flagged_chromosomal_abnormalities_zeroed_out.fam", col.names = c("fam_id", "SAMPID", "patid", "matid", "sex", "dummy"))

### Replace 0's with "x" for rvTest preferred formatting
fam_data$patid <- fam_data$matid <- fam_data$fam_id[fam_data$fam_id == 0] <- "x"


########################################
###---- Derive GSCAN phenotypes -----###
########################################

### DRINKER VERSUS NON-DRINKER
### ARIC variable name is "drnkr01".
### Combination of "Do you presently drink alcoholic beverages?" and "Have you ever consumed alcoholic beverages?" 
###   Response option for both questions are "yes" or "no", which are turned into the options below.  
###   Response options:
###           1 = Current Drinker
###           2 = Former Drinker
###           3 = Never Drinker
###           4 = Unknown
###
### Descriptives: 
### table(phenotypes$drnkr01)
###    1    2    3    4 
### 7257 2309 3153    6 
###
###  To obtain GSCAN "DND" collapse across Former and Never Drinkers
###  and make "Non-Drinkers". Current Drinkers will be made "Drinkers"

dnd <- phenotypes$drnkr01
dnd[dnd == 1] <- "Current Drinker"
dnd[dnd == 2 | dnd == 3] <- 1
dnd[dnd == "Current Drinker"] <- 2
dnd[dnd == 4 | is.na(dnd)] <- "x"

### AGE OF INITIATION OF SMOKING
###
### ARIC variable name is "hom29".
###    "How old were you when you first started regular cigarette smoking?"
###    Response option is an integer value.
###
### Descriptives: 
###
### > table(phenotypes$hom29)
###     0    1    4    5    6    7    8    9   10   11   12   13   14   15   16   17
###    19    1    2   10   11   15   22   32   65   44  154  187  302  659  941  715
###    18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33
###  1219  567  703  447  275  129   88  247   56   45   59   22  100    8   34    8
###    34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49
###    17   51    9    9   10    8   35    3   11    5    5   16    3    4    2    3
###    50   51   52   55   57   59   60   62
###     7    1    2    1    1    2    2    1
###
### > summary(phenotypes$hom29)
###   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
###   0.00   16.00   18.00   18.77   20.00   62.00    5377 
###
ai <- phenotypes$hom29
### remove ages older than 35 and younger than 10
ai[ai > 35 | ai < 10 | is.na(ai)] <- "x"


### CIGARETTES PER DAY
### ARIC variable name is "hom35"
###    "On the average of the entire time you smoked, how many cigarettes did you usually smoke per day?"
###    Response option is integer, or "0" for <1 cigarette per day
###
### > table(phenotypes$hom35)
###     0    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15
###    46   54  118  187  133  254  146   84   89   17  990   23  106   30   12  520
###    16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31
###    31   30   62    5 2559    1    5   10    5  193    9    3    7    6  771    3
###    32   33   34   35   36   37   38   40   42   43   45   50   51   54   55   58
###     1    1    1   44    3    1    1  572    1    3   14   72    1    1    3    1
###    60   65   70   75   80   86   90   99
###   100    1    4    2   10    1    1    3
### > summary(phenotypes$hom35)
###    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's
###    0.00   10.00   20.00   19.67   24.00   99.00    5420
### Responses are binned in accordance with the GSCAN Analysis Plan. 
cpd <- phenotypes$hom35
cpd[cpd <=  5 & cpd >=  1] <- 1
cpd[cpd <= 15 & cpd >=  6] <- 2
cpd[cpd <= 25 & cpd >= 16] <- 3
cpd[cpd <= 35 & cpd >= 26] <- 4
cpd[cpd >= 36 & cpd <= 60] <- 5
cpd[cpd > 60 | is.na(cpd)] <- "x"


### DRINKS PER WEEK
### ARIC variable name is "hom35"
###    "On the average of the entire time you smoked, how many cigarettes did you usually smoke per day?"
###    Response option is integer, or "0" for <1 cigarette per day
###
### Descriptives:
###
### >table(phenotypes$hom35)
###  0    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
###  46   54  118  187  133  254  146   84   89   17  990   23  106   30   12  520 
###  16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31 
###  31   30   62    5 2559    1    5   10    5  193    9    3    7    6  771    3 
###  32   33   34   35   36   37   38   40   42   43   45   50   51   54   55   58 
###   1    1    1   44    3    1    1  572    1    3   14   72    1    1    3    1 
###  60   65   70   75   80   86   90   99 
### 100    1    4    2   10    1    1    3 
###
### >summary(phenotypes$hom35)
###   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
###   0.00   10.00   20.00   19.67   24.00   99.00    5420


### ARIC variable names are "dtia96", "dtia97", and "dtia98"
###     "dtia96" - "How many glasses of wine do you usualy have per week? (4oz. glasses; round down)." 
###     "dtia97" - "How many bottles of cans or beer do you usualy have per week? (12oz. bottles or cans; round down)." 
###     "dtia98" - "How many drinks of hard liquor do you usualy have per week? (4oz. glasses; round down)."
###      Response option for all three is integer. 
###
###  Descriptives:
###
### >table(phenotypes$dtia96)
###  0    1    2    3    4    5    6    7    8    9   10   11   12   14   15   16 
###  5226  844  461  255  147   90   75   50   27    3   34    1   15   28    9    2 
###  17   18   20   21   25   28   30   32   33   35   40 
###   1    3    7    5    1    2    3    1    1    1    1 
###
### >summary(phenotypes$hom35)
###   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
###   0.00   10.00   20.00   19.67   24.00   99.00    5420


### ARIC variable names are "dtia96", "dtia97", and "dtia98"
###     "dtia96" - "How many glasses of wine do you usualy have per week? (4oz. glasses; round down)." 
###     "dtia97" - "How many bottles of cans or beer do you usualy have per week? (12oz. bottles or cans; round down)." 
###     "dtia98" - "How many drinks of hard liquor do you usualy have per week? (4oz. glasses; round down)."
###      Response option for all three is integer. 
###
###  Descriptives:
###
### >table(phenotypes$dtia96)
###  0    1    2    3    4    5    6    7    8    9   10   11   12   14   15   16 
###  5226  844  461  255  147   90   75   50   27    3   34    1   15   28    9    2 
###  17   18   20   21   25   28   30   32   33   35   40 
###   1    3    7    5    1    2    3    1    1    1    1 
###
### >summary(phenotypes$dtia96)
### Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
###  0.000   0.000   0.000   0.868   1.000  40.000    5478 
###
### >table(phenotypes$dtia97)
### 0    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
### 4356  674  528  312  214  107  297   93   76   10   97    3  186    4   40   28 
###  16   18   19   20   21   22   23   24   25   28   30   32   33   35   36   40 
###   5   28    1   36   19    1    1   89    8    8   12    2    1   10    8    6 
###  42   45   48   49   50   56   60   63   70   72   80   92 
###  13    2    6    1    3    2    4    1    1    2    1    1 
###
### >summary(phenotypes$dtia97)
### Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
###  0.000   0.000   0.000   2.609   2.000  92.000    5474 
###
### >tableIphenotypes$dtia98)
###  0    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
### 4387  735  551  295  239  190  148  138   70   11  151   14   57    3  103   33 
###  16   17   18   20   21   24   25   26   27   28   30   32   33   34   35   36 
###   9    9    7   36   30    1   10    1    1    9    6    2    1    2    4    1 
###  39   40   44   45   47   48   50   51   52   54   55   56   63   64   75   77 
###   1    7    1    1    1    2    5    1    1    1    1    3    1    2    1    2 
###  90   99 
###   1    2 
###
### >summary(phenotypes$dtia98)
### Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
###  0.000   0.000   0.000   2.227   2.000  99.000    5483 

wine <- phenotypes$dtia96 # 1 drink = 4oz
beer <- phenotypes$dtia97 # 1 drink = 12oz
spirits <- phenotypes$dtia98 # 1 drink = 1.5oz

### muliply wine by 4 and divide wine by 5 to normalize to standard drink of 5 oz for wine
### Combine all alcohol types, left-anchor at 1, and log
dpw <- log((wine*4/5 + beer + spirits) + 1) 
dpw[is.na(dpw)] <- "x"


### SMOKING INITIATION
### ARIC variable name is "evrsmk01"
### The variable checks answers to "Have you ever smoked cigarettes?" and "Do you now smoke cigarettes?".
###    Response options are "yes" or "no". 
###
### Descriptives:
###
### >table(phenotypes$evrsmk01)
### 0    1 
### 5328 7434 
###
### >summary(phenotypes$evrsmk01)
### Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
### 0.0000  0.0000  1.0000  0.5825  1.0000  1.0000       9 

si <- phenotypes$evrsmk01
si[si == 1] <- 2
si[si == 0] <- 1
si[is.na(si)] <- "x"


### SMOKING CESSATION
### ARIC variable names are "cursmk01" and "forsmk01"
### Both varaiables take into account the questions: "Have you ever smoked cigarettes?" and "Do you now smoke cigarettes?"
###    Response options are "yes" or "no". 
###    Smoking inititation (si) is coded as "2" for "Smoker" if "yes" to "Have you ever smoked cigarettes?"
###            If a subsequent "yes" to "Do you now smoke cigarettes?", smoking cessation (sc) is coded as "2" for "Current Smoker".
###            If a subsequent "no" to "Do you now smoke cigarettes?",  smoking cessation (sc) is coded as "1" for "Former Smoker".       
###    Smoking inititation (si) is coded as "1" for "Non Smoker" if "no" to "Have you ever smoked cigarettes?" 
        
current.smoker <- subset(phenotypes, select=c("cursmk01"))
former.smoker <- subset(phenotypes, select=c("forsmk01"))
N <- nrow(phenotypes)
sc <- rep(NA, N)
for(i in 1:N){
    if(is.na(current.smoker[i,1]) | is.na(former.smoker[i,1])){
        sc[i] <- NA
    }
    else if (current.smoker[i,1]  == 0 & former.smoker[i,1] == 0){
        sc[i] <- NA
    }
    else if (current.smoker[i,1]  == 0 & former.smoker[i,1] == 1){
        sc[i] <- 1 ### former smokers are coded as 1
    }
    else if (current.smoker[i,1]  == 1 & former.smoker[i,1] == 0){
        sc[i] <- 2 ### current smokers are coded as 2
    }
}
sc[is.na(sc)] <- "x"



### Create dataframe with our new GSCAN variables
N <- nrow(phenotypes)
NAs <- rep("x", N)
gscan.phenotypes <- data.frame(famid = NAs,
                               geneva_id = phenotypes$gen_id,
                               patid = NAs,
                               matid = NAs,
                               sex = ifelse(phenotypes$sex == "M", 1, 2),
                               cpd = cpd,
                               ai = ai,
                               si = si,
                               sc = sc,
                               dnd = dnd,
                               dpw = dpw,
                               age = phenotypes$age,
                               age2 = phenotypes$age^2,
                               height = phenotypes$height,
                               weight = phenotypes$weight,
                               currentformersmoker = sc)

### Merge in the SAMPID, which is used in the genotype files
gscan.phenotypes <- merge(gscan.phenotypes, id_map, by="geneva_id", all.x=TRUE)

### Reorder phenotype file to make pedigree file consistent with genotype IDs
gscan.phenotypes <- gscan.phenotypes[c(2,16,3:15)]

### Read in PCs and add to pedigree file, then write out to a phenotype and covariate file
[ here read in PCs and merge into phenotype file (probably by the SAMPID) ]


############# PRELIMINARY #####################

### Write to file [NOTE TO HANNAH: will have to be changed once we
### have PCs and ancestry groups identified. PCs will have to be read
### in like with read.table() and we'll have to subset the dataset
### into European and African ancestry, and then write out one
### phenotype and covariate file per ancestry group.

PCs <- read.table(xxxFile from Zhenxxx)

ancestry.IDs <- read.table(xxxFile from Zhenxxx)
### EUROPEANS
phenotypes.EUR.ped <- subset(gscan.phenotypes, ancestry == "EUR",
                        select=c("famid","SAMPID","patid","matid", "sex",
                            "cpd", "ai","si", "sc", "dnd","dpw"))
write.table(phenotypes.EUR.ped, file="ARIC.EUR.phenotypes.ped", quote=F, col.names=T, row.names=F, sep="\t")

covariates.EUR.ped <- subset(gscan.phenotypes, ancestry == "EUR"
                        select=c("famid","SAMPID","patid","matid", "sex",
                            "age", "age2", "height", "weight", "currentformersmoker",
                            "PC1", "PC2", "PC3", "PC4", "PC5", "PC6", "PC7", "PC8",
                            "PC9", "PC10"))
write.table(covariates.EUR.ped, file="ARIC.EUR.covariates.ped", quote=F, col.names=T, row.names=F, sep="\t")


phenotypes.AFR.ped <- subset(gscan.phenotypes, ancestry == "AFR",
                        select=c("famid","SAMPID","patid","matid", "sex",
                            "cpd", "ai","si", "sc", "dnd","dpw"))
write.table(phenotypes.AFR.ped, file="ARIC.AFR.phenotypes.ped", quote=F, col.names=T, row.names=F, sep="\t")

covariates.AFR.ped <- subset(gscan.phenotypes, ancestry == "AFR"
                        select=c("famid","SAMPID","patid","matid", "sex",
                            "age", "age2", "height", "weight", "currentformersmoker",
                            "PC1", "PC2", "PC3", "PC4", "PC5", "PC6", "PC7", "PC8",
                            "PC9", "PC10"))
write.table(covariates.AFR.ped, file="ARIC.AFR.covariates.ped", quote=F, col.names=T, row.names=F, sep="\t")

Genotypes

MESA

(Hannah/Joyce to update following Framingham as a guide)

Phenotypes

Description of phenotypes can be found here: Media:MESA phenotypes - FINAL.pdf


eMERGE

(Hannah/Joyce to update following Framingham as a guide)

Phenotypes

Description of phenotypes can be found here: Media:EMERGE.pdf


Stroke

(Hannah/Joyce to update following Framingham as a guide)

Genotype Processing

Pre-Phasing QC

QC parameters that we chose: MAF > 0.01

SNP callrate > 0.95

Missingness per individual > 0.95

HWE = 0.05 / number of markers but greater than 5e-8

To update the strand builds: http://www.well.ox.ac.uk/~wrayner/strand/


## Check strands against latest 1000G: http://www.well.ox.ac.uk/~wrayner/tools/
#!/bin/bash
#SBATCH --qos=blanca-ibg
#SBATCH --mem=40gb
perl HRC-1000G-check-bim.pl -b ARIC_b37_filtered.bim -f ARIC_b37_filtered.frq -r  1000GP_Phase3_combined.legend -g -p EUR


## Phasing using shapeit
#!/bin/bash
#SBATCH --mem=20gb
#SBATCH --time=48:00:00
#SBATCH -o shapeit_aric_%j.out
#SBATCH -e shapeit_aric_%j.err
#SBATCH --qos blanca-ibgc1
#SBATCH --ntasks-per-node 48
#SBATCH -J shapeit_aric
shapeit -B ARIC_b37_filtered-updated-chr${1} -M /rc_scratch/meli7712/dbGAP/1000GP_Phase3/genetic_map_chr${1}_combined_b37.txt -O phased/ARIC_b37_filtered-updated-chr${1}.phased -T 48

## To convert the shapeit output into vcf
#!/bin/bash
#SBATCH --mem=20gb
#SBATCH --time=24:00:00
#SBATCH -o shapeit_mesa_%j.out
#SBATCH -e shapeit_mesa_%j.err
#SBATCH --qos janus
#SBATCH --ntasks-per-node 12
#SBATCH -J shapeit_mesa
shapeit -convert --input-haps mesa-chr${1}.phased --output-vcf mesa-chr${1}.phased.vcf -T 12
## Imputation
#!/bin/bash
#SBATCH --mem=30gb
#SBATCH --time=72:00:00
#SBATCH -o impute_mesa_%j.out
#SBATCH -e impute_mesa_%j.err
#SBATCH --qos blanca-ibgc1
#SBATCH --ntasks-per-node 48
#SBATCH -J impute_mesa

/work/KellerLab/Zhen/bin/Minimac3/bin/Minimac3 --haps mesa-chr${1}.phased.vcf --cpus 48 --refHaps /rc_scratch/meli7712/dbGAP/references/${1}.1000g.Phase3.v5.With.Parameter.Estimates.m3vcf.gz --chr ${1} --noPhoneHome --format GT,DS,GP --allTypedSites --prefix mesa-chr${1}.phased.imputed