GSCAN dbGaP
Studies
Framingham
ID Mapping
The following snppit describes how the PLINK genotype file IDs (which use "sampid") were mapped to the dbGaP_Subject_ID contained in the available phenotype files. The snippet only contains one of Joyce Ling's phenotype files for illustration only.
This script and the results it produces can be found in /work/KellerLab/GSCAN/dbGaP/Framingham/ID_mapping.r
### ID mapping file from dbGaP_Subject_ID to SAMPID
ID.map <- read.table(gzfile("/work/KellerLab/GSCAN/dbGaP/Framingham/PhenoGenotypeFiles/RootStudyConsentSet_phs000007.Framingham.v28.p10.c1.HMB-IRB-MDS/PhenotypeFiles/phs000007.v28.pht001415.v16.p10.Framingham_Sample.MULTI.txt.gz"), header=T, sep="\t", stringsAsFactors=F)
### Genotype files
genotype.IDs <- read.table("/work/KellerLab/GSCAN/dbGaP/Framingham/PhenoGenotypeFiles/ChildStudyConsentSet_phs000342.Framingham.v16.p10.c1.HMB-IRB-MDS/GenotypeFiles/phg000006.v9.FHS_SHARe_Affy500K.genotype-calls-matrixfmt.c1/subject_level_PLINK_sets/FHS_SHARe_Affy500K_subjects_c1.fam", header=F)
names(genotype.IDs) <- c("famid", "SAMPID", "patid", "matid", "sex", "phenotype")
length(which(genotype.IDs$SAMPID %in% ID.map$SAMPID))
## 6954
x <- merge(genotype.IDs, ID.map, by="SAMPID", all.x=T)
x <- x[,c(1:5,7)]
### One of Joyce's phenotype ID files (eventually all phenotypes for all available participants were merged in, but this is a good example.)
phenotypes <- read.table("OffC_Exam_1.txt", header=T, sep="\t")
xx <- merge(x, phenotypes, by="dbGaP_Subject_ID", all=TRUE)
xx <- xx[,c(2:ncol(xx),1)] ## Reorder so the dbGaP_Subject_ID is the last column
write.table(xx, file="framingham_GSCAN_phenotypesCovariates.ped", quote=FALSE, sep="\t", row.names=F)
Phenotypes
(Joyce will update this section)
Genotypes
We used the Affy 500K genotypes found here: /work/KellerLab/GSCAN/dbGaP/Framingham/PhenoGenotypeFiles/ChildStudyConsentSet_phs000342.Framingham.v16.p10.c1.HMB-IRB-MDS/GenotypeFiles/phg000006.v9.FHS_SHARe_Affy500K.genotype-calls-matrixfmt.c1/subject_level_PLINK_sets/FHS_SHARe_Affy500K_subjects_c1.[bed|bim|fam]
ARIC
(Hannah/Joyce to update this section following Framingham as a guide)
ID Mapping
Phenotypes
phenotypes <- read.table("/work/KellerLab/GSCAN/dbGaP/ARIC/PhenoGenotypeFiles/ChildStudyConsentSet_phs000090.ARIC_RootStudy.v3.p1.c1.HMB-IRB/PhenotypeFiles/phs000090.v3.pht000114.v2.p1.c1.GENEVA_ARIC_Subject_Phenotypes.HMB-IRB.txt.gz",
header=T,
sep="\t",
stringsAsFactors=F)
phenotypes <- subset(phenotypes, select=c("geneva_id", "racegrp", "gender","v1age01", "anta01",
"anta04", "drnkr01", "hom29", 'hom35', "hom32", 'cigt01',
'evrsmk01', 'dtia90','dtia96', 'dtia97','dtia98', 'cursmk01',
'forsmk01'))
### rename phenotypes to be readable
names(phenotypes)[c(1,2,3,4,5,6)] <- c("gen_id", "race", "sex", "age", "height", "weight")
### To connect sample ids to geneva ids, take SAMPID (the ID used in the genotype fam file, and SUBJID (aka geneva_id) )
id_map <- read.table(gzfile("/work/KellerLab/GSCAN/dbGaP/ARIC/PhenoGenotypeFiles/ChildStudyConsentSet_phs000090.ARIC_RootStudy.v3.p1.c1.HMB-IRB/GenotypeFiles/phg000035.v1.ARIC_GEI.genotype-qc.MULTI/geno-qc/samp-subj-mapping.csv.gz"),
header=T,
sep=",",
stringsAsFactors=F)[,c(2,1)]
names(id_map) <- c("SAMPID", "geneva_id")
### import genotype data to get family info
fam_data <- read.table("/work/KellerLab/GSCAN/dbGaP/ARIC/PhenoGenotypeFiles/ChildStudyConsentSet_phs000090.ARIC_RootStudy.v3.p1.c1.HMB-IRB/GenotypeFiles/phg000035.v1.ARIC_GEI.genotype-calls-matrixfmt.c1.GRU.update1/Genotypes_with_flagged_chromosomal_abnormalities_zeroed_out/ARIC_PLINK_flagged_chromosomal_abnormalities_zeroed_out.fam", col.names = c("fam_id", "SAMPID", "patid", "matid", "sex", "dummy"))
### Replace 0's with "x" for rvTest preferred formatting
fam_data$patid <- fam_data$matid <- fam_data$fam_id[fam_data$fam_id == 0] <- "x"
########################################
###---- Derive GSCAN phenotypes -----###
########################################
### DRINKER VERSUS NON-DRINKER
### ARIC variable name is "drnkr01".
### Combination of "Do you presently drink alcoholic beverages?" and "Have you ever consumed alcoholic beverages?"
### Response option for both questions are "yes" or "no", which are turned into the options below.
### Response options:
### 1 = Current Drinker
### 2 = Former Drinker
### 3 = Never Drinker
### 4 = Unknown
###
### Descriptives:
### table(phenotypes$drnkr01)
### 1 2 3 4
### 7257 2309 3153 6
###
### To obtain GSCAN "DND" collapse across Former and Never Drinkers
### and make "Non-Drinkers". Current Drinkers will be made "Drinkers"
dnd <- phenotypes$drnkr01
dnd[dnd == 1] <- "Current Drinker"
dnd[dnd == 2 | dnd == 3] <- 1
dnd[dnd == "Current Drinker"] <- 2
dnd[dnd == 4 | is.na(dnd)] <- "x"
### AGE OF INITIATION OF SMOKING
###
### ARIC variable name is "hom29".
### "How old were you when you first started regular cigarette smoking?"
### Response option is an integer value.
###
### Descriptives:
###
### > table(phenotypes$hom29)
### 0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17
### 19 1 2 10 11 15 22 32 65 44 154 187 302 659 941 715
### 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
### 1219 567 703 447 275 129 88 247 56 45 59 22 100 8 34 8
### 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
### 17 51 9 9 10 8 35 3 11 5 5 16 3 4 2 3
### 50 51 52 55 57 59 60 62
### 7 1 2 1 1 2 2 1
###
### > summary(phenotypes$hom29)
### Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
### 0.00 16.00 18.00 18.77 20.00 62.00 5377
###
ai <- phenotypes$hom29
### remove ages older than 35 and younger than 10
ai[ai > 35 | ai < 10 | is.na(ai)] <- "x"
### CIGARETTES PER DAY
### ARIC variable name is "hom35"
### "On the average of the entire time you smoked, how many cigarettes did you usually smoke per day?"
### Response option is integer, or "0" for <1 cigarette per day
###
### > table(phenotypes$hom35)
### 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
### 46 54 118 187 133 254 146 84 89 17 990 23 106 30 12 520
### 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
### 31 30 62 5 2559 1 5 10 5 193 9 3 7 6 771 3
### 32 33 34 35 36 37 38 40 42 43 45 50 51 54 55 58
### 1 1 1 44 3 1 1 572 1 3 14 72 1 1 3 1
### 60 65 70 75 80 86 90 99
### 100 1 4 2 10 1 1 3
### > summary(phenotypes$hom35)
### Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
### 0.00 10.00 20.00 19.67 24.00 99.00 5420
### Responses are binned in accordance with the GSCAN Analysis Plan.
cpd <- phenotypes$hom35
cpd[cpd <= 5 & cpd >= 1] <- 1
cpd[cpd <= 15 & cpd >= 6] <- 2
cpd[cpd <= 25 & cpd >= 16] <- 3
cpd[cpd <= 35 & cpd >= 26] <- 4
cpd[cpd >= 36 & cpd <= 60] <- 5
cpd[cpd > 60 | is.na(cpd)] <- "x"
### DRINKS PER WEEK
### ARIC variable name is "hom35"
### "On the average of the entire time you smoked, how many cigarettes did you usually smoke per day?"
### Response option is integer, or "0" for <1 cigarette per day
###
### Descriptives:
###
### >table(phenotypes$hom35)
### 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
### 46 54 118 187 133 254 146 84 89 17 990 23 106 30 12 520
### 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
### 31 30 62 5 2559 1 5 10 5 193 9 3 7 6 771 3
### 32 33 34 35 36 37 38 40 42 43 45 50 51 54 55 58
### 1 1 1 44 3 1 1 572 1 3 14 72 1 1 3 1
### 60 65 70 75 80 86 90 99
### 100 1 4 2 10 1 1 3
###
### >summary(phenotypes$hom35)
### Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
### 0.00 10.00 20.00 19.67 24.00 99.00 5420
### ARIC variable names are "dtia96", "dtia97", and "dtia98"
### "dtia96" - "How many glasses of wine do you usualy have per week? (4oz. glasses; round down)."
### "dtia97" - "How many bottles of cans or beer do you usualy have per week? (12oz. bottles or cans; round down)."
### "dtia98" - "How many drinks of hard liquor do you usualy have per week? (4oz. glasses; round down)."
### Response option for all three is integer.
###
### Descriptives:
###
### >table(phenotypes$dtia96)
### 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16
### 5226 844 461 255 147 90 75 50 27 3 34 1 15 28 9 2
### 17 18 20 21 25 28 30 32 33 35 40
### 1 3 7 5 1 2 3 1 1 1 1
###
### >summary(phenotypes$hom35)
### Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
### 0.00 10.00 20.00 19.67 24.00 99.00 5420
### ARIC variable names are "dtia96", "dtia97", and "dtia98"
### "dtia96" - "How many glasses of wine do you usualy have per week? (4oz. glasses; round down)."
### "dtia97" - "How many bottles of cans or beer do you usualy have per week? (12oz. bottles or cans; round down)."
### "dtia98" - "How many drinks of hard liquor do you usualy have per week? (4oz. glasses; round down)."
### Response option for all three is integer.
###
### Descriptives:
###
### >table(phenotypes$dtia96)
### 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16
### 5226 844 461 255 147 90 75 50 27 3 34 1 15 28 9 2
### 17 18 20 21 25 28 30 32 33 35 40
### 1 3 7 5 1 2 3 1 1 1 1
###
### >summary(phenotypes$dtia96)
### Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
### 0.000 0.000 0.000 0.868 1.000 40.000 5478
###
### >table(phenotypes$dtia97)
### 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
### 4356 674 528 312 214 107 297 93 76 10 97 3 186 4 40 28
### 16 18 19 20 21 22 23 24 25 28 30 32 33 35 36 40
### 5 28 1 36 19 1 1 89 8 8 12 2 1 10 8 6
### 42 45 48 49 50 56 60 63 70 72 80 92
### 13 2 6 1 3 2 4 1 1 2 1 1
###
### >summary(phenotypes$dtia97)
### Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
### 0.000 0.000 0.000 2.609 2.000 92.000 5474
###
### >tableIphenotypes$dtia98)
### 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
### 4387 735 551 295 239 190 148 138 70 11 151 14 57 3 103 33
### 16 17 18 20 21 24 25 26 27 28 30 32 33 34 35 36
### 9 9 7 36 30 1 10 1 1 9 6 2 1 2 4 1
### 39 40 44 45 47 48 50 51 52 54 55 56 63 64 75 77
### 1 7 1 1 1 2 5 1 1 1 1 3 1 2 1 2
### 90 99
### 1 2
###
### >summary(phenotypes$dtia98)
### Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
### 0.000 0.000 0.000 2.227 2.000 99.000 5483
wine <- phenotypes$dtia96 # 1 drink = 4oz
beer <- phenotypes$dtia97 # 1 drink = 12oz
spirits <- phenotypes$dtia98 # 1 drink = 1.5oz
### muliply wine by 4 and divide wine by 5 to normalize to standard drink of 5 oz for wine
### Combine all alcohol types, left-anchor at 1, and log
dpw <- log((wine*4/5 + beer + spirits) + 1)
dpw[is.na(dpw)] <- "x"
### SMOKING INITIATION
### ARIC variable name is "evrsmk01"
### The variable checks answers to "Have you ever smoked cigarettes?" and "Do you now smoke cigarettes?".
### Response options are "yes" or "no".
###
### Descriptives:
###
### >table(phenotypes$evrsmk01)
### 0 1
### 5328 7434
###
### >summary(phenotypes$evrsmk01)
### Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
### 0.0000 0.0000 1.0000 0.5825 1.0000 1.0000 9
si <- phenotypes$evrsmk01
si[si == 1] <- 2
si[si == 0] <- 1
si[is.na(si)] <- "x"
### SMOKING CESSATION
### ARIC variable names are "cursmk01" and "forsmk01"
### Both varaiables take into account the questions: "Have you ever smoked cigarettes?" and "Do you now smoke cigarettes?"
### Response options are "yes" or "no".
### Smoking inititation (si) is coded as "2" for "Smoker" if "yes" to "Have you ever smoked cigarettes?"
### If a subsequent "yes" to "Do you now smoke cigarettes?", smoking cessation (sc) is coded as "2" for "Current Smoker".
### If a subsequent "no" to "Do you now smoke cigarettes?", smoking cessation (sc) is coded as "1" for "Former Smoker".
### Smoking inititation (si) is coded as "1" for "Non Smoker" if "no" to "Have you ever smoked cigarettes?"
current.smoker <- subset(phenotypes, select=c("cursmk01"))
former.smoker <- subset(phenotypes, select=c("forsmk01"))
N <- nrow(phenotypes)
sc <- rep(NA, N)
for(i in 1:N){
if(is.na(current.smoker[i,1]) | is.na(former.smoker[i,1])){
sc[i] <- NA
}
else if (current.smoker[i,1] == 0 & former.smoker[i,1] == 0){
sc[i] <- NA
}
else if (current.smoker[i,1] == 0 & former.smoker[i,1] == 1){
sc[i] <- 1 ### former smokers are coded as 1
}
else if (current.smoker[i,1] == 1 & former.smoker[i,1] == 0){
sc[i] <- 2 ### current smokers are coded as 2
}
}
sc[is.na(sc)] <- "x"
### Create dataframe with our new GSCAN variables
N <- nrow(phenotypes)
NAs <- rep("x", N)
gscan.phenotypes <- data.frame(famid = NAs,
geneva_id = phenotypes$gen_id,
patid = NAs,
matid = NAs,
sex = ifelse(phenotypes$sex == "M", 1, 2),
cpd = cpd,
ai = ai,
si = si,
sc = sc,
dnd = dnd,
dpw = dpw,
age = phenotypes$age,
age2 = phenotypes$age^2,
height = phenotypes$height,
weight = phenotypes$weight,
currentformersmoker = sc)
### Merge in the SAMPID, which is used in the genotype files
gscan.phenotypes <- merge(gscan.phenotypes, id_map, by="geneva_id", all.x=TRUE)
### Reorder phenotype file to make pedigree file consistent with genotype IDs
gscan.phenotypes <- gscan.phenotypes[c(2,16,3:15)]
### Read in PCs and add to pedigree file, then write out to a phenotype and covariate file
[ here read in PCs and merge into phenotype file (probably by the SAMPID) ]
############# PRELIMINARY #####################
### Write to file [NOTE TO HANNAH: will have to be changed once we
### have PCs and ancestry groups identified. PCs will have to be read
### in like with read.table() and we'll have to subset the dataset
### into European and African ancestry, and then write out one
### phenotype and covariate file per ancestry group.
PCs <- read.table(xxxFile from Zhenxxx)
ancestry.IDs <- read.table(xxxFile from Zhenxxx)
### EUROPEANS
phenotypes.EUR.ped <- subset(gscan.phenotypes, ancestry == "EUR",
select=c("famid","SAMPID","patid","matid", "sex",
"cpd", "ai","si", "sc", "dnd","dpw"))
write.table(phenotypes.EUR.ped, file="ARIC.EUR.phenotypes.ped", quote=F, col.names=T, row.names=F, sep="\t")
covariates.EUR.ped <- subset(gscan.phenotypes, ancestry == "EUR"
select=c("famid","SAMPID","patid","matid", "sex",
"age", "age2", "height", "weight", "currentformersmoker",
"PC1", "PC2", "PC3", "PC4", "PC5", "PC6", "PC7", "PC8",
"PC9", "PC10"))
write.table(covariates.EUR.ped, file="ARIC.EUR.covariates.ped", quote=F, col.names=T, row.names=F, sep="\t")
phenotypes.AFR.ped <- subset(gscan.phenotypes, ancestry == "AFR",
select=c("famid","SAMPID","patid","matid", "sex",
"cpd", "ai","si", "sc", "dnd","dpw"))
write.table(phenotypes.AFR.ped, file="ARIC.AFR.phenotypes.ped", quote=F, col.names=T, row.names=F, sep="\t")
covariates.AFR.ped <- subset(gscan.phenotypes, ancestry == "AFR"
select=c("famid","SAMPID","patid","matid", "sex",
"age", "age2", "height", "weight", "currentformersmoker",
"PC1", "PC2", "PC3", "PC4", "PC5", "PC6", "PC7", "PC8",
"PC9", "PC10"))
write.table(covariates.AFR.ped, file="ARIC.AFR.covariates.ped", quote=F, col.names=T, row.names=F, sep="\t")
Genotypes
MESA
(Hannah/Joyce to update following Framingham as a guide)
Phenotypes
Description of phenotypes can be found here: Media:MESA phenotypes - FINAL.pdf
eMERGE
(Hannah/Joyce to update following Framingham as a guide)
Phenotypes
Description of phenotypes can be found here: Media:EMERGE.pdf
Stroke
(Hannah/Joyce to update following Framingham as a guide)
Genotype Processing
Pre-Phasing QC
QC parameters that we chose: MAF > 0.01
SNP callrate > 0.95
Missingness per individual > 0.95
HWE = 0.05 / number of markers but greater than 5e-8
To update the strand builds: http://www.well.ox.ac.uk/~wrayner/strand/
## Check strands against latest 1000G: http://www.well.ox.ac.uk/~wrayner/tools/ #!/bin/bash #SBATCH --qos=blanca-ibg #SBATCH --mem=40gb perl HRC-1000G-check-bim.pl -b ARIC_b37_filtered.bim -f ARIC_b37_filtered.frq -r 1000GP_Phase3_combined.legend -g -p EUR
## Phasing using shapeit #!/bin/bash #SBATCH --mem=20gb #SBATCH --time=48:00:00 #SBATCH -o shapeit_aric_%j.out #SBATCH -e shapeit_aric_%j.err #SBATCH --qos blanca-ibgc1 #SBATCH --ntasks-per-node 48 #SBATCH -J shapeit_aric shapeit -B ARIC_b37_filtered-updated-chr${1} -M /rc_scratch/meli7712/dbGAP/1000GP_Phase3/genetic_map_chr${1}_combined_b37.txt -O phased/ARIC_b37_filtered-updated-chr${1}.phased -T 48
## To convert the shapeit output into vcf #!/bin/bash #SBATCH --mem=20gb #SBATCH --time=24:00:00 #SBATCH -o shapeit_mesa_%j.out #SBATCH -e shapeit_mesa_%j.err #SBATCH --qos janus #SBATCH --ntasks-per-node 12 #SBATCH -J shapeit_mesa shapeit -convert --input-haps mesa-chr${1}.phased --output-vcf mesa-chr${1}.phased.vcf -T 12
## Imputation #!/bin/bash #SBATCH --mem=30gb #SBATCH --time=72:00:00 #SBATCH -o impute_mesa_%j.out #SBATCH -e impute_mesa_%j.err #SBATCH --qos blanca-ibgc1 #SBATCH --ntasks-per-node 48 #SBATCH -J impute_mesa /work/KellerLab/Zhen/bin/Minimac3/bin/Minimac3 --haps mesa-chr${1}.phased.vcf --cpus 48 --refHaps /rc_scratch/meli7712/dbGAP/references/${1}.1000g.Phase3.v5.With.Parameter.Estimates.m3vcf.gz --chr ${1} --noPhoneHome --format GT,DS,GP --allTypedSites --prefix mesa-chr${1}.phased.imputed